Maximum-Entropy Density Estimation for MRI Stochastic Surrogate Models
نویسندگان
چکیده
منابع مشابه
Maximum Entropy Density Estimation with Incomplete Data
We propose a natural generalization of Regularized Maximum Entropy Density Estimation (maxent) to handle input data with unknown values. While standard approaches to handling missing data usually involve estimating the actual unknown values, then using the estimated, complete data as input, our method avoids the two-step process and handles unknown values directly in the maximum entropy formula...
متن کاملMaximum Entropy Models and Stochastic Optimality Theory
In a series of recent publications (most notably Boersma (1998); see also Boersma and Hayes (2001)), Paul Boersma has developed a stochastic generalization of standard Optimality Theory in the sense of Prince and Smolensky (1993). While a classical OT grammar maps a set of candidates to its optimal element (or elements), in Boersma’s Stochastic Optimality Theory (StOT for short) a grammar defin...
متن کاملEstimation Bias in Maximum Entropy Models
Maximum entropy models have become popular statistical models in neuroscience and other areas in biology and can be useful tools for obtaining estimates of mutual information in biological systems. However, maximum entropy models fit to small data sets can be subject to sampling bias; i.e., the true entropy of the data can be severely underestimated. Here, we study the sampling properties of es...
متن کاملConsistency and Generalization Bounds for Maximum Entropy Density Estimation
We investigate the statistical properties of maximum entropy density estimation, both for the complete data case and the incomplete data case. We show that under certain assumptions, the generalization error can be bounded in terms of the complexity of the underlying feature functions. This allows us to establish the universal consistency of maximum entropy density estimation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Antennas and Wireless Propagation Letters
سال: 2014
ISSN: 1536-1225,1548-5757
DOI: 10.1109/lawp.2014.2349933